
AIAA-98-1780

DESIGN OF NEURAL NETWORKS FOR
FAST CONVERGENCE AND ACCURACY

Peiman G. Maghami* and Dean W. Sparks, Jr.+

NASA Langley Research Center, Hampton, VA 2368 1-0001

Abstract

A novel procedure for the design and training of
artificial neural networks, used for rapid and efficient
controls and dynamics design and analysis for flexible
space systems, has been developed. Artificial neural
networks are employed to provide a means of evaluating
the impact of design changes rapidly. Specifically, two-
layer feedforward neural networks are designed to ap-
proximate the functional relationship between the com-
ponentkpacecraft design changes and measures of its
performance. A training algorithm, based on statisti-
cal sampling theory, is presented, which guarantees that
the trained networks provide a designer-specified de-
gree of accuracy in mapping the functional relationship.
Within each iteration of this statistical-based algorithm,
a sequential design algorithm is used for the design and
training of the feedforward network to provide rapid
convergence to the network goals. Here, at each se-
quence a new network is trained to minimize the error
of previous network. The design algorithm attempts
to avoid the local minima phenomenon that hampers
the traditional network training. A numerical exam-
ple is performed on a spacecraft application in order to
demonstrate the feasibility of the proposed approach.

Introduction

The overall design process for aerospace systems
typically consists of the following steps: design, anal-
ysis, and evaluation. If the evaluation is not satisfac-
tory, the process is repeated until a satisfactory design
is obtained. Dynamics and controls analyses, which
define the critical performance of any aerospace sys-

~

Senior Research Engineer, Guidance and Control Branch,

' Aerospace Technologist, Guidance and Control Branch.
Copyright 0 1998 by the American Institute of Aeronautics
and Astronautics, Inc. No copyright is asserted in the United
States under Title 17, U.S. Code. The U.S. Government has a
royalty-free license to exercise all rights under the copyright
claimed herein for Government Purposes. All other rights are
reserved by the copyright owner.

Senior Member, AIAA.

tem are particularly important. Generally, all aerospace
systems experience excitations resulting from internal
and operational disturbances, such as instrument scan-
ning in space systems or aerodynamic turbulence in air-
craft. These excitations can potentially interfere with
the mission of the system. For example, in space sys-
tems, excessive vibrations could be detrimental to its
science instruments which usually require consistently
steady pointing in a specified direction for a prescribed
time duration, or excessive vibrations due to turbulent
aerodynamics could diminish the ride quality or safety
of an aircraft. Typically, in the course of the design
of a spacecraft, as the definitions and the designs of
the spacecraft and its components mature, several de-
tailed dynamics and controls analyses are performed in
order to insure that all mission requirements are being
met. These analyses, although necessary, have histori-
cally been very time consuming and costly due to the
large size of the aerospace system analysis model, large
number of disturbance scenarios involved, and the ex-
tent of time domain simulations that need to be carried
out. For example, a typical pointing performance anal-
ysis for a space system might require several months or
more, which can amount to a considerable drain on the
time and resources of a space mission.

It is anticipated that artificial neural networks can
be used to significantly speed up the design and anal-
ysis process of aerospace systems. However, there
are certain drawbacks associated with neural networks.
These include, the time-consuming nature of the train-
ing process, training difficulties, such as optimization
problems, and a lack of a meaningful way to establish
network accuracy. The focus of this paper is to address
these specific issues, and develop a methodology for ef-
ficient and fast training neural networks, with specified
accuracy, to approximate the functional relationships
between design change parameters (be they structural
or material properties, in the disturbance environment,
or in the control system design) and the performance
of the systedcomponent. A critical concern with any

1
American Institute of Aeronautics and Astronautics

approximation is its accuracy. Qpical neural network
training involves the use of a select set of input and
output data, taken from the functional relationship to be
approximated. If these training points are chosen judi-
ciously, the trained neural network should give a very
good approximation. However, there is no guarantee
that the neural network will continue to give a good ap-
proximation of the relationship for those points not in
the training set. The design methodology presented in
this paper addresses this problem, in terms of allowing
the design of neural networks to a specific level of ac-
curacy (in terms of approximating relationships), for a
given statistical confidence level, and accounting for in-
put and output data not used in the original training set.
Moreover, a sequential training algorithm is presented
for a two-layer feedforward network, which should pro-
vide benefits, such as enhanced training speed, and au-
tomated network architecture design. Numerical exam-
ples based on a spacecraft application are carried out to
demonstrate the feasibility of the proposed neural net-
work design methodology.

The paper is organized as follows. Following this
introduction section, brief descriptions on typical (con-
ventional) dynamics analysis will be given. Next, dis-
cussions on neural networks, their use to approximate
functional relationships, and a typical design proce-
dure, will be presented. Then, the new neural network
methodology, given in a step by step format, will be pre-
sented, followed by numerical examples of the proposed
approach applied to a NASA spacecraft model. Finally,
a concluding remarks section will close the paper.

Typical Dynamics and Controls Analysis

Whatever type of analysis to be performed, it
would be highly beneficial to the analyst to be able
to rapidly assess the effects on overall system perfor-
mance, due to the almost inevitable design changes that
a system will undergo during its lifetime. During de-
sign phase of the spacecraft almost all components go
through changes, with each change having the poten-
tial to affect the performance of the spacecraft to some
degree. In many instances, these changes are expected
to affect the performance of the spacecraft so much as
to warrant a partial or full analysis of its performance.
In the area of spacecraft dynamics and controls, these
type of changes include, changes in the inertia or flex-
ibility of the structural components which would affect
the dynamic characteristics of the spacecraft; changes
in the control system design, hardware, and software;
or changes in the characteristics of the external and in-
ternal disturbances that may act on the spacecraft in
orbit. Now, depending on the nature and extent of
these changes, there may be a need to reevaluate the

controlled dynamical performance of the system. The
dynamical performance could be in terms of pointing
and jitter performance, tracking performance, closed-
loop stability margin, and many other forms. The com-
putational time and cost associated with each of these
performance analysis may be substantial. For exam-
ple, to evaluate the effects of changing the location of
an instrument within the spacecraft bus on the pointing
stability of another instrument, a full finite element anal-
ysis, followed by a possible controller redesign, closed-
loop simulation of spacecraft response for possibly all
disturbance scenarios, and a jitter and stability analysis,
are required. Perhaps, even more analysis would be re-
quired if the controller has to be redesigned. The cost
of such analyses can be exorbitant, particularly, when
they have to be repeated several times during the design
phase. One approach to this problem is to use artificial
neural networks (ANNs) , particularly feedforward net-
works, for rapid system analysis and design.

Rapid Analysis and Design with ANN

The motivation behind the use of an ANN is to
speed up the analysis or design process substantially.
The main use of an ANN is in its ability to approxi-
mate functional relationships, particularly nonlinear re-
lationships. This can be a static relationship, one that
does not involve time explicitly, or a dynamics rela-
tionship, which explicitly involves time. For an ANN
there is no distinction between a static or dynamic map,
there is just input/output training data. For example, an
ANN would be designed to approximate the mapping
between the first instrument location and the pointing
performance of the second instrument. Once such a
network is trained, the pointing performance of the sec-
ond instrument for a specified location of the first instru-
ment may be easily and almost instantaneously obtained
by simulating the ANN for the one input point, corre-
sponding to the location of the first instrument. It is this
advantage of A N N s that promises savings in the overall
design and analysis time. Although the initial training
time for an ANN may be long, it can be performed
during off hours, in a semi-automated manner, without
much involvement by the designer(s). Another example
could be an ANN that would be designed to approxi-
mate the dynamic behavior of a nonlinear component,
e.g., nonlinear reaction wheel with friction. Dynamic
approximations via ANN is achieved by using time de-
lays and feedback of the output back to the input, which
is defined as recurrence. Such networks are referred to
as recurrent networks I-*.

The successful design of an ANN depends on the
proper training of the network as well as the ability
to characterize the accuracy of its approximation. The

2
American Institute of Aeronautics and Astronautics

training of the network involves the judicious selection
of points in the input variable space, which along with
the corresponding output points, constitute the training
set. For example, the design and training of an ANN for
mapping a component parameter to spacecraft perfor-
mance relationship requires a number of design points
for use in training. These points generally span the
range of the changes that the component parameter is
allowed to have, many of which would cause signifi-
cant changes in the system model. The proper training
of the network is the key to its ability to provide a good
mapping. However, this is possible only if one can
quantify the degree of accuracy of the approximation of
the ANN, particularly for points in the parameter space
not included in the training set.

Artificial Neural Networks (ANNs)

Artificial neural networks (ANN:) have grown into
a large field since their inception, and a complete dis-
cussion on them is beyond the scope of this paper.
Instead, this section will present a very brief descrip-
tion on A N N s . A N N s were developed to mimic some
of the processes of the human brain. They consist of
groups of elements (called neurons) which perform spe-
cific computations on incoming data, with interconnec-
tions which permit data flow from one group of neurons
to the next, similar to the way groups of real neurons
receive and transmit information through dendrites and
axons, respectively, in the brain. Like their biological
counterparts, ANNs can be trained to perform a vari-
ety of tasks, such as modeling functional relationships.
The ANN, when presented with appropriate input and
output data related to a specific functional relationship,
can adjust itself such that it can give a good repre-
sentation of that relationship. This feature is particu-
larly useful when the relationship is nonlinear and/or
not well defined, and thus difficult to model by conven-
tional means. Also ANNs, by their very nature, are a
perfect fit for efficient parallel computations on digital
computers. Though there are several types of ANNs, in
this paper, only the feedforward ANN will be discussed.

A typical feedforward ANN is depicted in figure 1,
with m inputs and np outputs, and each circle represent-
ing a single neuron. The name feedforward implies that

Input Hidden Hidden Output
Layer A Layer 1 Layer 2 Layer

n n

Figure 1. Typical Feedforward ANN.

the data flow is one way and there are no feedback paths
between neurons. The output of each neuron from one
c o l m is an input to each neuron of the next column.
Using the typical naming convention, each column of
neurons is called a layer, the initial column where the
inputs come into the ANN is called the input layer, and
the last layer, i.e., where the outputs come out of the
ANN, is denoted as the output layer. All other lay-
ers in between are called hidden layers. These A N N s
can have as many layers as desired, and each hidden
layer can have as many neurons as desired. Each neu-
ron can be modeled as shown in figure 2, with n being
the number of inputs to the neuron. Associated with

to Function
neuron neuron

Figure 2. Representation of a
neuron in the feedforward ANN.

each of the n inputs is some adjustable scalar weight,
wi , i = 1,2, ..., n, which multiplies that input. In ad-
dition, an adjustable bias value, b, can be added to the
summed scaled inputs. These combined inputs are then
fed into an activation function, which produces the out-
put of the neuron. The activation function can take
on many forms to shape the output; three of the more
common functions are linear, log sigmoid and binary,
as shown in figure 3. The linear activation function
simply outputs the input; the log sigmoid function is
a nonlinear function of the input, with output values
between 0 and 1; while the binary activation function
outputs a +1 for non-negative inputs and a -1 for nega-

3
American Institute of Aeronautics and Astronautics

tive inputs. During training, the set of weights and bias

linear log sigmoid binary

Figure 3. Three common activation functions.

terms associated with the neurons are adjusted until the
output of the ANN matches, to within some specified
level of tolerance, the true outputs of the function, for
the same inputs.

Training of a Feedforward ANN

The objective is to design and train a feedforward
network to map the relationship between an n, x 1 in-
put vector, 6, and an np x 1 output vector yp. In this
paper, a feedforward network, like the one shown in
figure 1, but with only one hidden layer, is considered.
It has been shown in the literature that a feedforward
network, with only one hidden layer, can approximate
a continuous function to any degree of accuracy'-3. It
is obvious that this capability carries over to networks
with more than one hidden layer. Furthermore, assume
that the activation function for the output layer is a pure
linear. The output layer has np nodes, corresponding to
the elements of vector pp. The number of nodes in
the hidden layer, nh is arbitrary, however, it has to be
large enough to guarantee convergence of the network
to the functional relationship that it is designed to ap-
proximate, but not too large as to cause overmapping.
The network equation for this two-layer feedforward
network is given by

Here, W, and W2 represent the nh x n, and np x nh
weighting matrices for the hidden and output layers,
respectively; bl and b2 are respectively the bias vectors
for the two layers; f represents the activation function
for the hidden layer; A is an n, x q matrix denoting the
collection of q n, x 1 input vectors; and Yn is an np x q
matrix representing the output of the network. Once the
number of nodes in the hidden layer has been chosen,
the network design is reduced to adjusting the weighting
coefficient matrices, W1 and WZ, and the weighting
bias vectors, bl and b ~ . The parameters of feedforward
networks are usually adjusted using a gradient method,
named the back propagation meth0d4s5, or a pseudo-
Newtonian approach, such as the Levenberg-Marquardt

technique '. vpically, in these methods, the weighting
matrices and bias vectors are adjusted to minimize some
cost function, which is a function of the error of the
network. The network error is defined as the difference
between the output of the true system and that of its
neural network approximation, for a given set of inputs.
The cost function is usually taken as the sum squared
error of the network over all of the input sample points.
If q sets of points are used for training the network,
then the cost function, in terms of the sum squared error
(SSE) of the network, can be written as

un .) a n.

k = l r = l j=1

where Yd is a np x q matrix of the desired outputs.
The typical procedure is to keep updating the weights
and biases until the error E goes below some specified
tolerance level. At this point, the feedforward network
is considered trained.

The use of feedforward A N N s has some advan-
tages over the conventional approximation techniques,
such as polynomials and splines. For example, polyno-
mials are hard to implement in hardware due to signal
saturation, and if they are of higher order, there may
be stability problems in determining the coefficients.
ANNs, on the other hand, are very amenable to hard-
ware implementation. As a matter of fact, to date, sev-
eral VLSI chips based on multilayer neural network ar-
chitecture are available74. Also, because of the highly
interconnected and coupled nature of A N N s , they are
rather robust to hardware failures, since the weight is
distributed among many nodes.

There are a few problems associated with neural
networks. One has to do with the rate of convergence
during training, in other words, training time. The
second problem is the proper architecture, e.g., node
numbers and layers, to use. Third, is the tendency
of the steepest descent technique, and even, pseudo-
Newton methods, which are used in the training process,
to get stuck in local minima. This causes training
problems and contribute substantially to the time it
takes to train a network. Finally, the training of the
network is based solely on the given input and output
data points; there is no guarantee, when the network is
given new input data points, that the resulting output
data will approximate the corresponding true output
data to within the specified error tolerance to which
the network was designed. In the next section, a new
and novel design procedure is presented to address these
problems with neural networks.

Network Training for Accuracy and Fast Convergence

4
American Institute of Aeronautics and Astronautics

Mathematical Modeling

As mentioned earlier, ANNs may be used to ap-
proximate the functional relationship between changes
in the system components and the spacecraft perfor-
mance measures. In the area of dynamics and control,
these changes may include those effecting the struc-
tural model of the system, the control system model,
or the disturbance models. A typical block diagram of
a controlled spacecraft is given in figure 4. Here, the
elements of the vector 6, could represent a wide vari-
ety of potential changes in the structural model, such as
variation in size for structural element, frequency un-
certainty/variation in flexible modes, and many others
changes. Those changes which could impact the struc-
tural model must necessarily involve some redistribution
of mass, flexibility, or damping. The elements of 6d
could represent the changes in the magnitude and phase
characteristics as well as the location (on the structure)
of the external and internal disturbances that are to be
considered. The external disturbances, such as gravity
gradient torques, atmospheric drag torques, and etc., are
fairly well understood. However, they generally depend
on the geometry and inertia of the spacecraft which may
undergo several changes during the design phase. The
internal disturbances are typically the result of scanning
or spinning instruments or components whose charac-
teristics may change radically in the design phase. The

disturbances

WC rtructural

Figure 4. Typical block diagram of

elemepts of 6, could represent the changes in the control
system model. Similar to the structural and disturbance
models, the control system model may change several
times during the design phase due to changes in the con-
trol system hardware characteristics, such as reaction
wheels, rate gyros, star trackers, and etc., or changes in
the system software, such as controller gains, dynamics
(frequency content), saturation limits, and others.

Now, let 6 be an n, x 1 vector representing the
overall potential change vector, defined as

controlled spacecraft.

The performance of the spacecraft, in the context of dy-
namics and control, may be divided into time-domain

measures and frequency-domain measures. Time-
domain performance measures are typically the pointing
performance, jitterlstability performance, or tracking
performance of the spacecraft or its instruments. These
performance measures are usually obtained from time
simulations of the controlled spacecraft model, repre-
sented by the feedback connection of the dynamic model
of the spacecraft and the full control system model in
the presence of external or internal disturbances. The
frequency-domain performance measures are typically
the stability margins, bode plots, closed-loop band-
width, and other frequency-based stability and perfor-
mance measures. The frequency-domain performance
measures are generally obtained from the analysis of
the linear closed-loop model of the spacecraft. Let,
ypm be an r x 1 vector representing all time-domain
and frequency-domain performance measures that are
to considered for potential impact by design changes (a
subset of vector yp). Now, the problem is to design an
ANN which can map, to a specified degree of accuracy,
the relationship between the potential design change
vector 6 and the spacecraft performance measure vector
Ypm

Training with Fast Convergence

Here, a novel algorithm is presented to deal with
the three problems associated with the training of ANNs,
namely, size of the network, excessive training time,
getting stuck in a local minima. The algorithm is a se-
quential algorithm, wherein at each step a new feedfor-
ward network is designed and trained which minimizes
the current error function, which represents the level of
achievement by all the previous ANNs. Assume that a
ANN map is desired for a training data [X, Y], where X
represents an input sequence, and Y denotes an output
sequence. The sequential training algorithm is summa-
rized as follows:

a. Choose a feedforward network with one hidden
layer. The hidden layer can be any type of layer,
such as tan sigmoid, log sigmoid, etc. The output
layer should be a pure linear layer.
Use a small to moderate number of nodes, no, for
the hidden layer.
Based on a desired network error tolerance, etol ,
begin adjusting the parameters of the two layer
feedforward network, namely, Wf , bi , W i , and b i .
Here, the subscript indicates the layer number and
the superscript denotes the network number. Note
that techniques, such as back-propagation proce-
dure, a pseudo-Newtonian technique, such as the
Levenberg-Marquardt algorithm, or any other op-
timization technique may be used to perform the

b.

c.

5
American Institute of Aeronautics and Astronautics

d.

e.

f.

g*
h.

1.

j.

k.

process of adjusting the network parameters to
minimize the error.
Stop the training process as soon as the network
error goal is achieved or some measure of the
rate of decrease of the network error (learning
rate), for example the decrease in the network
error from some previous epoch to the current
epoch, gets below a designer-defined level. If the
network error goal is attained, the training process
is finished, otherwise, continue with the algorithm.
Update the overall weighting and bias matrices,
and activation functions

W,F = W i ; BF = B' 1

f F = f'

Compute the current network error at each training
point from Eq. (1) as follows:

D l = Y - [wi (fl(w;x + a:)) + (5)

where f' () represents the activation function used.
Use the pair [X, 011 as the new training data.
Choose a new feedforward network with the same
architecture as the previous, i.e. one hidden layer
and one output layer. The hidden layer can be any
type of layer, such as tan sigmoid, log sigmoid,
etc., and does not have to be of the same type as
that for the previous network. The output layer
should be a pure linear layer.
Use a small to moderate number of nodes, nl, for
the hidden layer. It is recommended to choose
the node number randomly from a range defined
by the designer. At any rate, it is best that the
number nodes chosen is different from that used
in the previous network. This would make sure
that the number of design variables (degrees of
freedom) changes from the previous problem, so
that there is a lesser chance of continuously getting
stuck in a local minima.
Based on the same desired network error tolerance,
et, l , begin adjusting the parameters of the two layer
feedforward network, namely, Wf, b f , Wz, and bi .
If the network error goal is achieved, then form the
overall network parameters as

f F = [F]
and the training process is finished.

1. If the rate of decrease of the network, as discussed
in step (d), gets below a designer-defined level,
stop the training process and update the current
network parameters as

m. Compute the current network error at each training
point as follows:

D2 = DI - [Wi(f2(W;X + a:)) + bi] (8)

In the first variation of the algorithm, use the pair
[X,D2] as the new training data, and repeat the
algorithm, beginning from step (h), until one of
three things happens: (i) network error goals are
attained at some sequence; (ii) a designer-defined
limit on the total number of training epochs (steps)
is reached; or (iii) a designer-defined limit on the
number of training sequences is reached.
In the second variation of the algorithm, repeat
the steps, beginning from step (a), but using the
overall weighting and bias matrices, and activation
functions for the initial guess, i.e.,

n.

0.

w: w:; B; +- B[

f1 +- f F

(9) W i t W; ; Bi + BF

This variation could lead to smaller overall net-
works (which satisfy the SSE goal), however, it
can require substantially longer training time since
the size of the network increases much faster as
compared to the first variation of the algorithm.

As mentioned previously, even if the ANN is
trained such that the network error is exactly zero there
are no guarantees that it can provide an accurate approx-
imation for points not in the training set. Of course, as
the number of training points increase one expects that
the accuracy of the network would improve. However,
there is no systematic way of establishing a priori this
increase in the accuracy of the network or ascertain-
ing that it does occur. Nonetheless, for an ANN to be
useful in approximating or mapping functional relation-
ships there must be a means of quantifying its accuracy.
To this end, an algorithm based on statistical theory is
developed and presented herein. The approach taken in
the algorithm is to follow a binomial experimentation
concept in order to establish confidence intervals on the

6
American Institute of Aeronautics and Astronautics

accuracy of the ANN’S approximations. Once a network
is trained, using the points in the training set, and an
acceptable tolerance level for the approximation error is
defined (the error between the exact functional relation-
ship and ANN at any point in the design space), then the
problem of network accuracy may be defined in terms
of a yes or no question, that is whether the network er-
ror at any point in the design space is greater than the
specified tolerance level or not. Now, if one randomly
selects a number of points in the design (input) space,
for every point there would be two possible outcomes to
this question. Either the network error, corresponding
to the design point, is greater than the tolerance level
or it is not. Experiments of this type, wherein repeated
independent trials with two possible outcomes are per-
formed, are known as binomial experiments*.

Assume that n trials have been performed wherein
for every trial the network error is simulated for each
input point, and the trial is considered a success if the
network is greater than the tolerance level, and a failure
if it is not. Denote the number of successes in the
n trials by the binomial random variable X and the
probability of success by p. A point estimator for p is
given by p = 6. Now, if the unknown probability p is
not expected to be too close to zero or one, a confidence
interval for p may be established using the distribution
of the point estimator j3 through the following theorems.

Theorem 1. If X is a binomial random variable with
mean p = np and variance u2 = npq, then the limiting
form of the distribution of

X - np z=- a’
as n -+ 00, is the standardized normal distribution
n (z ; 0, l) .

Proof: is provided in ref. 9. The normal distribution
is a very good approximation when the sample size n
is large and p is close to 0.5. It is even a fairly good
approximation for small n so long as p is not very close
to 0 or 1. From this theorem, the distribution of @ is
approximately normally distributed with mean, pp =

a confidence interval for the parameter p is established
in the following theorem.

E(7) X = p , and variance, ui = g$ / n 2 = p q / n . Now,

Theorem 2. For n 2 30; a (1 - a)lOO% confidence
interval for the binomial parameter p is approximately

where p is the proportion of success in a random sample
of size n , 4 = 1 - p , and Zap is the value of the

standard normal curve leaving an area of a/2 to the
right.

Proof: is given in ref. 9. If p is the center of a
(1 - a)lOO% interval, then p estimates p without error.
However, in most cases p will not be equal to p , but the
size of the difference will be less than Z a p f i with
(1 - a)lOO% confidence. It should be noted that only
the upper bound expression in Eq. (11) is useful for
application to the accurate design of ANN. The size of
the sample required to ensure that the error in estimating
p by p will be less than a number, say e, is given in
the following theorem.

Theorem 3. If f i is used as an estimate of p, one can be
(1 - a)100% confident that the error will be less than
a specified magnitude e when the sample size is

Proof: is given in ref. 9. It is observed from Eq. (12)
that the sample size needed is a function of 6, which
itself is computed from the sample. There are two ways
around this. One is to take a preliminary small sample
with nl 2 30 to obtain 6, and use that estimate in Eq.
(12) to compute the sample size needed for the desired
accuracy. The second option is to use the upper bound
expression in Eq. (12), instead of the equality term,
which does not depend on p. However, one must be
aware that upper bound expression generally provides
conservative results, i.e., it would lead to large values
of the required sample size. It is noted that the upper
bound expression becomes exact at p = 0.5.

Now, with aid of these theorems, an algorithm is
developed to train feedforward networks with quantified
degree of accuracy, given a confidence level. The
algorithm is presented in the following steps.

Design Algorithm

a.

b.

Define a training set {Ao, Yim} to be used as the
initial training set for the network design.
Choose a feedforward network with one hidden
layer. The hidden layer can be any type of layer,
such as tan sigmoid, log sigmoid, etc. The output
layer should be a pure linear layer.
Train the network using the sequential algorithm
described earlier. If, however, the optimization
does not converge, one has to either increase the
limit on the number of epochs or sequences of net-
works, decrease the desired network error toler-
ance, or restart the training with a different set of

c.

7
American Institute of Aeronautics and Astronautics

d.

e.

f.

g.

h.

i.

j.

k.

initial conditions. The initial values of the weights
of the ANN before training are the initial condi-
tions.
Choose a confidence level a for the network ac-
curacy.
Choose a desired tolerance for the network error,
etol. This is the acceptable difference between
the ANN’S approximation and the exact functional
value(s) at any point.
Choose a tolerance level, p to (, for the probability of
the network exceeding the desired error tolerance.
Take m samples of the network error by randomly
choosing m points in the input (design) space,
A1 E {61,62,. . . , bm} and computing the network
error for each of the points. Note that none of m
points should be in the initial training set (A’).
Moreover, the network errors are computed by
simulating the ANN as well as the true function
for each of the design points and subtracting one
from the other. The sample size rn must at the least
be greater than or equal to 30, however, and needs
to be assigned based on the degree of confidence or
accuracy that is desired. Let e l , e 2 , . . . , e m denote
the sampled network errors.
Define trial success as the network error exceeding
the desired tolerance, and count the number of
successes, n, , in the m trials above. Note that if no
successful event is observed in m trials, additional
trials (samples) must be taken, up to a designer-
defined limit, until a successful event is observed.
Additional discussion is provided on this point later
in this section.
Compute the sample proportion, p and 6

Compute the upper bound confidence level on the
probability of network error exceeding eto[

if p , 5 ptol, accept the designed network. Other-
wise, add the m sample points to the training set,
i.e., A = [Ao A’]; Ypm = [Yim Ybm], and re-
design the network by going back to step (a) of
the algorithm and repeating the entire algorithm.
This procedure may be repeated until convergence
is achieved or a limit on the number of iterations,
as defined by the designer, is reached. It should
be mentioned that the size of the ANN (nodes in
the hidden layer) may need to be increased if the
learning rate of the network becomes too slow dur-
ing training or the desired network error tolerance
can not be achieved.

As mentioned in step (g) of this algorithm, there is a
possibility that no successful event is observed in the
m trials, In such a case, one has to take more samples
until a successful event is observed. However, a limit
should be established on the sample size such that if
no successful event is observed the trained ANN is
accepted. Such a limit may be established from theorem
3. For example, for a sample size of s, if no successful
event is observed, it implies that p < 5. Assume that a
(1 - a)lOO% confidence is desired with 1% tolerance
on the true probability of success, then from theorem 3,
the sample size necessary for this level of tolerance and
accuracy is established as follows

ZZI2Pq ̂ 100002~,2
n=-<

e2 - S
(15)

Which would be satisfied if

s 2 1002,/2 (16)

For example, for 95% confidence level, Z,l2 = 1.96,
so that the desired network accuracy would be obtained
if the sample size is not smaller than 196.

Numerical Example

In order to illustrate the feasibility of the proposed
ANN design and training approach, it is used in the de-
sign and training of neural networks used in a dynamics
and controls analysis application for the NASA’s Lewis
spacecraft. A structural model of the spacecraft, con-
sisting of the rigid-body modes, and the first ten flexi-
ble modes, is used in the analysis. The attitude control
system model included full models (as they were avail-
able) of reaction wheels, rate gyros, and the star tracker.
However, a linearized model of the wheel dynamics was
used. A Kalman filter was designed and used to estimate
the vehicle’s attitude from the sensor data. The reac-
tion wheel dynamics included the linear friction model,
limits on the input command voltages and digital volt-
age quantization, as well as the quantization effects on
wheel RPM outputs due to the wheel’s optical encoder.
To each gyro dynamic model output channel, random
signals were added, which represent random drift walk
and instrument noise. The modeling of the star tracker
included noise and alignment errors. The spacecraft dis-
turbances included environmental disturbances, which
included gravity gradient torques, drag torques, mag-
netic unloading, as well as, a periodic disturbance at
0.3 Hz in roll and yaw axes. Both, the spacecraft struc-
ture and the attitude control system were modeled using
the various blocks of the SIMULINK software package.

Here, assume that there is uncertainty in the mag-
nitudes of the first two flexible modes, and therefore it

8
American Institute of Aeronautics and Astronautics

is desired to design a neural network to map the rela-
tionship between the changes in the frequencies of those
modes as well as changes in the attitude control band-
width to the dynamic performance of the spacecraft.
In this case, the performance is taken as peak-to-peak
steady-state response in the pitch axis. A multiplicative
scaling variable was used for each of the input vari-
ables. The scaling variable associated with the flexible
mode frequencies had a range of 0.85 to 1.2 each, and
the scaling variable associated with the controller band-
width had a range of 0.5 to 1.5. With a uniform intervals
of 0.05 and 0.2 used for the frequency scaling variables
and bandwidth scaling variables, respectively, an initial
training set, consisting of 384 training points, was gen-
erated. The training data was generated by performing a
closed-loop dynamic simulation of the system for each
combination of values of the scaling variables, and for
the disturbances discussed earlier. Each simulation was
a discrete linear simulation, and was run for one orbit,
with each orbit assumed to be 5996 seconds in duration.
After each simulation run, the peak-to-peak response of
the spacecraft in the pitch axis was computed and placed
in the appropriate location in the training data output. It
was observed from the training data that certain combi-
nation of values of scaling variables resulted in dynamic
instability, resulting in huge peak-to-peak response lev-
els. These values were all capped at lo00 arc-sec to
avoid numerical conditioning problems.

Following the statistics-based, sequential (first
variation), algorithm outlined in the paper, a two-
layer feedforward network, with a tan sigmoid hidden
layer and a pure linear output layer, was designed and
trained to provide the desired mapping. The network
was designed to have a 99% confidence level that the
probability of its approximation exceeding 5% error
level would be no greater than 5 percent. The entire
training process was performed using ’trainlm’ routine
of the. MATLAB’s Neural Network Toolbox, which is
based on Levenberg-Marquardt training approach. The
history of the training process is provided in Table 1.
First, a two-layer feedforward network with six nodes
was initialized and trained, with a sum squared error
(SSE) goal of 0.0001 for the output normalized data
(normalized with respect to maximum absolute value).
This network reduced the SSE to 0.0003686 after 400
epochs of training. However, the training of this net
was stopped after 400 epochs due to lack of progress in
reducing the SSE (less than 0.1% change in 25 epochs).
Following the sequential approach, the network error
was computed and used as the new training output data
for a next net. The number of nodes in the second net
was randomly chosen between 3 and 8, and turned out to
be 5. The second ANN reduced the SSE to 0.0002824
after 500 epochs of training, at which time the training

was stopped due to lack of progress. ,The procedure
continued on, designing and training three more ANNs,
before the target SSE was reached, as indicated in Ta-
ble l. Now, following the statistics-based approach,

Table 1. Training History, first ANN

SSE No. of No. of
ANN No Nodes Epochs

1 6 400 0.0003686

2 5 500 0.0002824

3 4 250 0.0002694

4 5 750 0.0002403

5 7 591 0.0000949

Total 27 249 1

100 points in the feasible range of the variable space
were chosen randomly, and then used in the discrete
simulation to generate peak-to-peak response values for
the system. Next, each point in the test data was also
simulated using the neural network trained initially. For
each test point, the output of the neural network was
compared to the true output (simulation results), which
resulted in 19 out of the 100 test points having a net-
work error greater than 5%, the desired accuracy. The
proportion from Eq. (13) turns out to be 0.19, which
results in the upper bound value for the probability of
network exceeding the desired accuracy, from Eq. (14),
of 0.2912, for a 99% confidence level. This was a well
above the desired tolerance on the probability of failure,
which was set at 5 percent. Therefore, the initial ANN
was rejected, and the test data was added to the original
training data to form the updated training data to be
used to train the next network.

Initializing the ANN to be trained at the weights
and biases of the first network, a two-layer feedforward
network with 27 nodes, the network was trained follow-
ing the sequential algorithm used in the first. With the
SSE goal of 150 (for the actual (non-normalized) out-
put), and using the Levenberg-Marquardt routine, the
network reduced the SSE from 1.59e+6 to 232.65, after
800 epochs of training, before training was stopped due
to lack of progress. This network reduced the SSE to
149.5 after 400 epochs of training. Following the se-
quential approach, the network error was computed and
used as the new training output data for a next net. The
number of nodes in the second net was randomly chosen
between 3 and 8, and turned out to be 8. The second
ANN reduced the SSE to 149.5, after 585 epochs of
training, where at the SSE goal was reached. The over-

9
American Institute of Aeronautics and Astronautics

all training history for the second network is given in
Table 2.

Table 2. Training History, second ANN

SSE No. of No. of
Nodes Euochs

1 27 800 232.65

2 8 585 149.50

Total 35 1385

Similar to the treatment for the previous network,
approach, 100 points in the feasible range of the vari-
able space were chosen randomly, and then used in the
discrete simulation to generate peak-to-peak response
values for the system. Next, each point in the test data
were also simulated using the second neural network.
For each test point, the output of the neural network
was compared to the true output (simulation results),
which resulted in none out of the 100 test points having
a network error greater than 5%, the desired accuracy.
Although, the proportion from Eq. (13) turns out be
null, which results in the upper bound value for the
probability of network exceeding the desired accuracy,
from Eq. (14), being 0. However, it should be re-
membered that the upper bound on the probability, as
represented by Eq. (14), is not valid at probabilities too
close to 0 or 1. However, even if one conservatively
assumes that the proportion was at 0.01 (which corre-
sponds to 1 failure in 100 samples), the upper bound
value for the probability of network exceeding the de-
sired accuracy becomes 0.0357, which is well below the
desired level of 0.05, and thus the network is accepted.

Concluding Remarks

This paper presented a novel methodology for ef-
ficient and fast training neural networks, with specified
accuracy. Neural networks were considered within the
context of dynamics and controls analysisldesign to ap-
proximate the functional relationships between design
change parameters (be they structural or material prop-
erties, in the disturbance environment, or in the con-
trol system design) and the performance of the sys-
tedcomponent. A critical concern with any approxi-
mation is its accuracy. ljpical neural network training
involves the use of a select set of input and output data,
taken from the functional relationship to be approxi-
mated. If these training points are chosen judiciously,
the trained neural network should give a very good ap-
proximation. However, there is no guarantee that the

10

neural network will continue to give a good approxi-
mation of the relationship for those points not in the
training set. The design methodology presented in this
paper addressed this problem, in terms of allowing the
design of neural networks to a specific level of accuracy,
for a given statistical confidence level, and account-
ing for input and output data not used in the original
training set. Specifically, two-layer feedforward neu-
ral networks are designed to approximate the functional
relationship between the componenthpacecraft design
changes and measures of its performance. A training
algorithm, based on statistical sampling theory, was pre-
sented, which guarantees that the trained networks pro-
vide a designer-specified degree of accuracy in map-
ping the functional relationship. Within each iteration
of this statistical-based algorithm, a sequential design
algorithm was used for the design and training of the
feedforward network to provide rapid convergence to
the network goals. Here, at each sequence a new net-
work was trained to minimize the error of the previ-
ous network. The design algorithm attempts to avoid
the local minima phenomenon that hampers the tradi-
tional network training, thereby speeding up the training
process. Numerical examples carried out on a NASA
spacecraft application demonstrated the feasibility of the
proposed neural network design methodology.

1.

2.

3.

4.

5 .

6.

7.

References

K.S. Narendra, “Adaptive Control of Dynamical
Systems Using Neural Networks”, Handbook of In-
telligent Control: Neural, Fuzzy and Adaptive Ap-
proaches, ed. by D.A. White and D.A. Sofge, Van
Nostrand Reinhold, New York, 1992., pp. 141-183.
K. Funahashi, “On the Approximate Realization of
Continuous Mappings by Neural Networks”, Neural
Networks, Vol. 2, 1989, pp. 183-192.
A.R. Gallant and H. White, “There Exists a Neural
Network That Does Not Make Avoidable Mistakes”,
Proceedings of the IEEE 2nd International Confer-
ence on Neural Networks, 1988, pp. 657664.
S. Haykin, Neural Networks: A Comprehensive
Foundation, Macmillan College Publishing Co.,
New York, 1994.
D.E. Rumelhart and J.L. McClelland, Parallel Dis-
tributed Processing, VoL. 1 , MIT Press, Cambridge,
MA, 1986.
Hagan, M. T., and Menhaj, M. B., “Training Feed-
forward Networks with the Marquardt Algorithm”,
IEEE Transactions on Neural Networks, Vol. 5 , No.
6, November 1994, pp. 989-993.
M.I. Elmasry (ed.), VLSI Artificial Neural Networks
Engineering, Kluwer Academic Publishers, Norwell,
MA. 1994.

American Institute of Aeronautics and Astronautics

8. K. Wawryn and B. Streszewski, “Low Power VLSI
Neuron Cells for Artificial Neural Networks”, Pro-
ceedings of the I996 IEEE International Symposium
on Circuits and Systems, 1996, pp. 372-375.

9. R.E. Walpole and R.H. Myers, Probability and Sta-
tistics for Engineers and Scientists, Macmillan Pub-
lishing Co., New York, 1985.

11
American Institute of Aeronautics and Astronautics

